Bounds on eigenvalues of real symmetric interval matrices for αBB method in global optimization
نویسندگان
چکیده
In this paper, we investigate bounds on eigenvalues of real symmetric interval matrices. We present a method that computes It outperforms many methods developed in the literature and produces as sharp possible The aim is to apply proposed compute lower hessian matrix nonconvex function ?BB use them produce tighter underestimator improves algorithm for solving global optimization problems. end, illustrate by example, comparison various approaches bounding Moreover, set test problems found are solved efficiently performances compared with those other methods.
منابع مشابه
Bounds on Real Eigenvalues and Singular Values of Interval Matrices
We study bounds on real eigenvalues of interval matrices, and our aim is to develop fast computable formulae that produce as-sharp-as-possible bounds. We consider two cases: general and symmetric interval matrices. We focus on the latter case, since on one hand such interval matrices have many applications in mechanics and engineering, and on the other many results from classical matrix analysi...
متن کاملBounds on the Extreme Eigenvalues of Real Symmetric Toeplitz Matrices
We derive upper and lower bounds on the smallest and largest eigenvalues, respectively, of real symmetric Toeplitz matrices. The bounds are rst obtained for positive-deenite matrices and then extended to the general real symmetric case. Our bounds are computed as the roots of rational and polynomial approximations to spectral, or secular, equations. The decomposition of the spectrum into even a...
متن کاملAnalysis of Eigenvalue Bounds for Real Symmetric Interval Matrices
In this paper, we present several verifiable conditions for eigenvalue intervals of real symmetric interval matrices overlapping or not overlapping. To above cases, two new methods with algorithms for computing eigenvalue bounds of real symmetric matrices are developed. We can estimate eigenvalue bounds moving away the assumption that two intervals containing two eigenvalues of real symmetric i...
متن کاملEigenvalues of symmetric tridiagonal interval matrices revisited
In this short note, we present a novel method for computing exact lower and upper bounds of a symmetric tridiagonal interval matrix. Compared to the known methods, our approach is fast, simple to present and to implement, and avoids any assumptions Our construction explicitly yields those matrices for which particular lower and upper bounds are attained.
متن کاملExtreme eigenvalues of real symmetric Toeplitz matrices
We exploit the even and odd spectrum of real symmetric Toeplitz matrices for the computation of their extreme eigenvalues, which are obtained as the solutions of spectral, or secular, equations. We also present a concise convergence analysis for a method to solve these spectral equations, along with an efficient stopping rule, an error analysis, and extensive numerical results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Yugoslav Journal of Operations Research
سال: 2023
ISSN: ['2334-6043', '0354-0243', '1820-743X']
DOI: https://doi.org/10.2298/yjor230315019z